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Abstract: We study the effect of tachyon condensation on a brane antibrane pair in su-

perstring theory separated in the transverse direction. The static properties of the tachyon

potential analyzed using level truncated string field theory reproduces the desired prop-

erty that the dependence of the minimum value of the potential on the initial distance

of separation between the branes decreases as we include higher level terms. The rolling

tachyon solution constructed using the conformal field theory methods shows that if the

initial separation between the branes is less than a critical distance then the solution is

described by an exactly marginal deformation of the original conformal field theory where

the correlation functions of the deformed theory are determined completely in terms of the

correlation functions of the undeformed theory without any need to regularize the theory.

Using this we give an expression for the pressure on the brane-antibrane system as a power

series expansion in exp(Cx0) for an appropriate constant C.
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1. Introduction

The spectrum of the bosonic open string theory living on a D-brane is known to have a

tachyonic mode. We now have a good understanding of the physics around the minimum

of the tachyon potential, both via conformal field theory (CFT) methods [1], and numerical

and analytical methods in string field theory [2 – 17]. In particular it is known that the

tachyon potential has a non-trivial minimum where the energy density from the potential

exactly equals the negative of the D-brane tension and as a result the sum vanishes. The

minimum represents a vacuum without any D-branes. Using conformal field theory meth-

ods one can also study time dependent solutions in string theory describing the rolling of

the tachyon towards the vacuum [18].

Similar conjectures hold in the case of the superstrings where tachyonic modes appear

in unstable systems like non-BPS D-branes or brane-antibrane pairs [19]. Level truncation

gives numerical evidence for these conjectures in Berkovits superstring field theory [20 –

23], but as of now we do not have an analytic solution for the vacuum.1 As in the case of

1An analytic solution has recently been constructed in the superstring field theory based on the cubic

action [24].
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bosonic string theory, one can also construct a conformal field theory describing the rolling

of the tachyon towards the vacuum [25].

Most of the work on tachyon condensation in superstring field theory has been carried

out on an unstable D-brane system, or a closely related system containing a coincident

brane-antibrane pair. In this paper, we look at a system of brane-antibrane pair separated

by a distance d. This is the configuration we expect to get in any realistic situation involving

tachyon condensation on a brane-antibrane system, e.g. in cosmology, where the brane-

antibrane pair would start out separated from each other and gradually come together

by gravitational attraction [26]. As they come closer than the critical distance the lowest

lying mode of the open string stretched between the brane and the antibrane will become

tachyonic and the condensation process would start. Thus if we want to study the end

point of tachyon condensation for such a system we need to study tachyon condensation

on a separated brane-antibrane pair.

Our analysis will be divided into two parts. We first look at the static configuration of

a separated brane-antibrane pair, and carry out a level truncation analysis of the tachyon

vacuum using Berkovits’ superstring field theory [27, 28]. In this case we do not expect

any surprise; rather we expect that at the bottom of the potential the total energy density

should continue to vanish irrespective of the initial distance between the brane-antibrane

pair. This result is bourn out by our analysis. In particular we find that while at the lowest

level the value of the potential at the minimum depends on the initial separation between

the brane-antibrane pair, this dependence reduces after inclusion of higher level terms in

the action.

The second part of the analysis involves study of the rolling tachyon solution using

conformal field theory method. Unlike in the case of rolling tachyon on a non-BPS D-brane

or a coincident brane-antibrane pair, in this case we cannot construct an exact boundary

state corresponding to the time dependent configuration. Nevertheless using a perturbative

approach one can write down an expression for the pressure as a series expansion in powers

of exp(Cx0) for an appropriate constant C depending on the initial separation of the brane-

antibrane system. We find that if the initial separation between the brane-antibrane pair is

less than a critical distance then the coefficients of the various terms of the expansion can

be expressed in terms of non-singular integrals. We analyze the behaviour of this series by

computing the first few terms in the expansion numerically.

For rolling tachyon solution on a coincident brane-antibrane pair the final state was

found to have vanishing pressure but non-zero energy density [25]. This reflects that the

final state is made of non-relativistic heavy closed string states [29, 30]. If instead of

starting with a coincident brane-antibrane pair we begin with a separated brane-antibrane

pair then the final state in principle could be different, (say) consisting of a mixture of

non-relativistic heavy closed string states and radiation containing relativistic light closed

string states. Thus computation of the final state pressure is an important problem since

this could tell us indirectly about the composition of the final state. Unfortunately since we

only have a power series expansion for the pressure, we cannot reach a definite conclusion

about the final state pressure. However we use the Pade approximant method to represent

the known results on the power series expansion as a ratio of polynomial functions, and
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extrapolate the result based on the first few coefficients to study the behaviour of the

pressure at large time. This naive extrapolation gives results consistent with vanishing

pressure at late time.

During our analysis we also develop a general procedure for studying rolling tachyon

solution in situations where the tachyon vertex operator is a non-trivial matter primary

operator. We find that as long as the tachyon is sufficiently tachyonic, ı.e. the tachyon mass2

is below a critical value, the system admits an exactly marginal deformation describing the

rolling of the tachyon away from the maximum. The essential point is that the integrated

vertex operator describing a rolling tachyon deformation, obtained by multiplying the zero

momentum tachyon vertex operator by eCX
0

for an appropriate constant C, has non-

singular operator product with itself for sufficiently large C. As a result deformation by

this operator describes an exactly marginal deformation of the conformal field theory.

2. Superstring field theory on brane-antibrane system

In this section we give a quick review of the construction of the superstring field theory

(SSFT) on a brane antibrane pair. We then identify the specific components of the string

field which we shall use for the study of tachyon condensation on a separated brane-

antibrane pair.

2.1 SSFT on a BPS D-brane

We begin by looking at the GSO(+) sector of the superstring field theory which describes

the dynamics of the NS sector of open strings living on a single BPS D-brane. The CFT

describing the first quantized open string theory is a direct product of superconformal

matter with c = 15 containing the fields Xµ, ψµ for 0 ≤ µ ≤ 9, and b, c, β, γ ghost CFT

with c = −15. The β, γ system can be reexpressed in terms of the bosonised ghosts ξ, η

and φ with [31]

β = ∂ξe−φ, γ = ηeφ . (2.1)

We shall be working in the large Hilbert space which includes the zero mode of the field

ξ and use the convention set in [21]. We normalize the various fields so that the leading

singularities in the various operator product expansions have the following form

∂Xµ(z)∂Xν(w) ≃ −1

2
ηµν(z − w)−2

∂φ(z)∂φ(w) ≃ −(z − w)−2

ψµ(z)ψν(w) ≃ ηµν (z − w)−1

ξ(z)η(w) ≃ (z − w)−1

b(z)c(w) ≃ (z − w)−1

eαφ(z)eβφ(w) ≃ (z − w)−αβe(α+β)w, z, w ∈ C

eik1·X(s)eik2·X(s′) ≃ |s− s′|−2k1·k2ei(k1+k2)·X(s′), s, s′ ∈ R . (2.2)

We shall denote by 〈∏iAi〉 the correlation functions in the combined matter-ghost bound-

ary CFT (BCFT) on the unit disk with vertex operators Ai inserted on the boundary. The
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correlation functions are normalized as

< ξ(z)c∂c∂2c(w)e−2φ(y) >= 2 . (2.3)

The BRST operator is given by:

QB =

∮
dzjB(z) =

∮
dz{c(Tm + Tξη + Tφ) + c∂cb+ ηeφGm − η∂ηe2φb} (2.4)

where the T ’s denote the energy momentum tensors for the various fields and Gm is the

matter superconformal generator:

Tm = −(∂Xµ∂Xµ +
1

2
ψµ∂ψµ)

Gm = −i
√

2ψµ∂X
µ

Tξη = ∂ξη

Tφ = −1

2
∂φ∂φ− ∂2φ . (2.5)

The Berkovits’ superstring field theory action is given by

S =
1

2g2

〈〈
(e−ΦQBe

Φ)
(
e−Φη0e

Φ
)
−
∫ 1

0
dte−tΦ∂te

tΦ
{
e−tΦQBe

tΦ, e−tΦη0e
tΦ
}〉〉

(2.6)

where the string field Φ is a ghost number zero and picture number 0 state of the CFT in

the large Hilbert space and the action needs to be defined by expanding (2.6) in a power

series in Φ and carefully preserving the order of the operators. The notation 〈〈 〉〉 means

〈〈A1A2 . . . An〉〉 = 〈f (n)
1 ◦A1(0)f

(n)
2 ◦A2(0) . . . f

(n)
n ◦An(0)〉 (2.7)

with f
(n)
l ◦ Al implying the conformal transformation of the operator Al under the map

f
(n)
l . The maps f

(n)
l are given by

f
(n)
l (z) = e(2πi(l−1))/n

(
1 + iz

1 − iz

)2/n

(2.8)

2.2 SSFT on a non-BPS D-brane

In order to extend this formalism to non-BPS D-branes one needs to take into account

the GSO(−) sector that now comes into the picture. In order to keep the basic algebraic

framework unchanged, one introduces internal Chan-Paton (CP) factors and performs a

trace over them. The GSO(+) sector states carry CP factor proportional to the 2 × 2

identity matrix I whereas the GSO(−) sector states carry CP factor proportional to the

Pauli matrix σ1. Consequently, the complete string field Φ̂ is now represented by

Φ̂ = Φ+ ⊗ I + Φ− ⊗ σ1 . (2.9)

We also need to modify the QB and η0 operators by tensoring them with CP factor σ3

Q̂B = QB ⊗ σ3, η̂0 = η0 ⊗ σ3 . (2.10)
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In computing the double bracket 〈〈 〉〉 of hatted operators we need to take the trace over

the internal CP factors:

〈〈Â1Â2 . . . Ân〉〉 = Tr〈f (n)
1 ◦ Â1(0)f

(n)
2 ◦ Â2(0) . . . f

(n)
n ◦ Ân(0)〉 . (2.11)

The Berkovits’ action looks almost the same, with all the fields and operators replaced by

hatted fields and operators respectively. We also divide the action by an extra factor of

2 in order to compensate for the factor of 2 coming from the trace over the internal CP

factors:

S =
1

4g2

〈〈(
(e−

bΦQBe
bΦ)(e−

bΦη0e
bΦ) −

∫ 1

0
dte−t

bΦ∂te
tbΦ{e−tbΦQBet

bΦ, e−t
bΦη0e

tbΦ}
)〉〉

(2.12)

2.3 SSFT on a D-brane-D̄-brane pair

The formalism needs to be further modified in order to extend it to the brane-antibrane

system. Here besides the internal CP factors like the ones used for the non-BPS branes

one also needs to use external CP factors. There are four kinds of strings represented by

the external CP matrices:

A :

(
1 0

0 0

)
, B :

(
0 0

0 1

)
, C :

(
0 1

0 0

)
, D :

(
0 0

1 0

)
.

The strings on the individual branes are represented by the CP factors A, B or equivalently

by I and σ3. These are in the GSO(+) sector. The GSO(−) states are the ones which live

on the strings stretched between the brane and the antibrane, — they are represented by

the CP factors C, D or equivalently by σ1, σ2. The complete string field Φ̂ now reads

Φ̂ =
(
Φ

(1)
+ ⊗ I + Φ

(2)
+ ⊗ σ3

)
⊗ I +

(
Φ

(3)
− ⊗ σ1 + Φ

(4)
− ⊗ σ2

)
⊗ σ1 . (2.13)

We follow the convention that the external CP factor will be written first followed by the

internal CP factor.

The Q̂B and η̂0 operators are now given by

Q̂B = QB ⊗ I ⊗ σ3, η̂0 = η0 ⊗ I ⊗ σ3 . (2.14)

The double brackets 〈〈 〉〉 are now defined with a double trace, over both internal and

external CP factors:

〈〈Â1Â2 . . . Ân〉〉 = Trext ⊗ Trint〈f (n)
1 ◦ Â1(0)f

(n)
2 ◦ Â2(0) . . . f

(n)
n ◦ Ân(0)〉 . (2.15)

The action looks very much the same as for the non-BPS D-brane except that we divide

by a further factor of 2 to compensate for the trace over the external Chan-Paton factors:

S =
1

8g2

〈〈(
(e−

bΦQBe
bΦ)(e−

bΦη0e
bΦ) −

∫ 1

0
dte−t

bΦ∂te
tbΦ{e−tbΦQBet

bΦ, e−t
bΦη0e

tbΦ}
)〉〉

.

(2.16)
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We shall find it convenient to consider the time direction as a circle with unit period. The

tachyon potential would then just be the negative of the action for static configurations.

With this normalization the total tension of the brane-antibrane pair is given by

T =
1

2π2g2
. (2.17)

For explicit calculations, it is useful to expand the action in a formal power series in Φ̂. It

can be arranged in the form [21]

S =
1

4g2

∞∑

M,N=0

(−1)N

(M +N + 2)!

(
M +N

N

)〈〈(
Q̂BΦ̂

)
Φ̂M

(
η̂0Φ̂

)
Φ̂N
〉〉

. (2.18)

2.4 Separated D-branes

Our interest is in a configuration where the brane and the antibrane are separated from

each other. In this case the mass of any state of the string stretched between the brane

and the antibrane gets an additional contribution from the tension of the string compared

to the string whose both ends are on the same brane. If we denote by d′ the separation

between the brane and the antibrane then in the α′ = 1 unit this additional contribution,

affecting the formula for the mass2 in sectors C and D, is given by d′2/4π2. Consequently

the vertex operators in the GSO(−) sector, which represent the states of string stretching

between the brane and the anti-brane, gets an additional piece that reflects the effect of

the winding charge that the string carries due to the stretching between the branes. If we

denote by Y the world-sheet scalar along the direction of separation and if Ỹ denotes the

field dual to Y then the additional piece in the vertex operator is given by2

∆ = e±id
′ eY /2π = e±id

eY (2.19)

where d = d′/2π and the + and − signs refer to sectors C and D respectively.

We shall now describe the off-shell vertex operators associated with the string field

components we use in the level truncation analysis. First of all we have the tachyon vertex

operator. For the non-BPS D-brane, the zero momentum tachyon vertex operator is given

by

V̂T = ξce−φ ⊗ σ1 . (2.20)

On a separated brane-antibrane pair the tachyon vertex operator must carry the factors

given in (2.19). Since we require that the tachyon that condenses is real, the vertex operator

2One way to understand eq. (2.19) is to compactify the direction y transverse to the brane on a circle of

large radius. Under T-duality this gets mapped to a dual circle eS1 of small radius, and the original Dp-D̄p

system gets mapped to a D(p + 1)-D̄(p + 1) brane configuration wrapped on the circle, with one of the

branes carrying a Wilson line proportional to d′ along eS1. Thus an open string stretched between the brane

and the anti-brane will carry momentum proportional to d′ along eS1. With the normalization convention

we have chosen this momentum is equal to ±d′/2π. Thus the vertex operator representing these states will

carry e±id′ eY factors.
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must be hermitian. This gives

V̂T = ξce−φeid
eY ⊗

(
0 1

0 0

)
⊗ σ1 + ξce−φe−id

eY ⊗
(

0 0

1 0

)
⊗ σ1

=

(
0 ξce−φeid

eY

ξce−φe−id
eY 0

)
⊗ σ1 . (2.21)

V̂T has total conformal weight d2 − 1
2 . Furthermore we have

Q̂BV̂T =

((
d2 − 1

2

)
ξc∂ce−φeid

eY − d√
2
ψyce

ideY − ηeφeid
eY
)
⊗
(

0 1

0 0

)
⊗ iσ2

+

((
d2 − 1

2

)
ξc∂ce−φe−id

eY +
d√
2
ψyce

−ideY − ηeφe−id
eY
)
⊗
(

0 0

1 0

)
⊗ iσ2 ,

η̂0V̂T =

(
0 ce−φeid

eY

ce−φe−id
eY 0

)
⊗ iσ2 , (2.22)

where ψy is the world-sheet superpartner of Ỹ on the boundary.

The string field theory action has two Z2 symmetries under which the tachyon vertex

operator V̂T is even. The first one corresponds to Y → −Y , ψy → −ψy together with

conjugation by the CP factor σ1 × I. We shall denote the generator of this symmetry

by σ. The second one is the so called ‘twist symmetry’ under which a vertex operator

with a conformal weight h from the oscillators (not counting the contribution from the

e±id
eY factors) picks up a phase of (−1)h+1 for integer h and (−1)h+ 1

2 for half integer

h, and the Chan-Paton factor associated with this vertex operator gets transposed. We

shall accompany this by the Y → −Y , ψy → −ψy transformation so that the tachyon

vertex operator V̂T is even under this transformation. We shall denote the generator of

this symmetry by τ . We shall restrict to string field configurations which are even under

the σ and τ transformations.

At the next level we have four more string fields associated with the vertex operators

V̂
(1)
K = ξce−φψy ⊗

(
1 0

0 −1

)
⊗ I

V̂
(2)
K = ξce−φψy ⊗

(
1 0

0 1

)
⊗ I

V̂
(1)
M = c∂cξ∂ξe−2φ ⊗

(
1 0

0 −1

)
⊗ I

V̂
(2)
M = c∂cξ∂ξe−2φ ⊗

(
1 0

0 1

)
⊗ I , (2.23)

each of conformal weight 0. Of these the vertex operators V̂
(2)
K and V̂

(1)
M are odd under

σ. Thus we can set the components of the string field along this direction to zero. The

vertex operator V̂
(2)
M on the other hand is odd under τ . Thus we can set the coefficient

of this operator also to zero. As a result we are left with only the vertex operator V̂
(1)
K

which is even under both σ and τ . The field associated with this vertex operator has

the interpretation of being the mode that shifts the branes in the opposite direction by a

distance proportional to its expectation value.
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From eq. (2.23) we get

Q̂BV̂
(1)
K =

(
i
√

2 c∂Y + ηψye
φ
)
⊗
(

1 0

0 −1

)
⊗ σ3 , (2.24)

η̂0V̂
(1)
K = ce−φψy ⊗

(
1 0

0 −1

)
⊗ σ3 . (2.25)

3. Tachyon vacuum

Now, with the ingredients prepared, we can apply the method of level truncation to study

tachyon condensation on separated branes. We shall use the expanded form (2.18) of the

Berkovits’ action to evaluate the relevant terms at various levels. We define the level of a

string field component multiplying a vertex operator of conformal weight h to be h+ 1
2 so

that the zero momentum tachyon at zero separation between the brane and the antibrane

has weight zero.

3.1 Level d2 Computation

The only field we need to keep in the analysis at the lowest level (d2) is the tachyon field:

Φ̂ = tV̂T ≡ T̂ . (3.1)

In order to get a non-vanishing correlation function the total φ charge must add up to −2.

This restricts the form of the pure tachyon potential to the form at2 + bt4, since terms

involving more than four powers of T̂ (ı.e. M +N > 2 terms in (2.18)) vanish by φ charge

conservation.

From the expanded form (2.18), the quadratic term in the action reads

S2 =
1

8g2
〈〈(Q̂BT̂ )(η̂0T̂ )〉〉 (3.2)

We use (2.22) and (2.22) to write down the form of the two-point function and then compute

it using the standard correlation functions on the unit disk:3

〈〈(Q̂BT̂ )(η̂0T̂ )〉〉 = 2

(
d2 − 1

2

){
〈〈(ξc∂ce−φeideY )(ce−φe−id

eY )〉〉

+〈〈(ξc∂ce−φe−ideY )(ce−φeid
eY )〉〉

}
t2 . (3.3)

Using

〈〈(ξc∂ce−φe±ideY )(ce−φe∓id
eY )〉〉

= (f
(2)′
1 (0)f

(2)′
2 (0))d

2− 1
2 〈ξc∂ce−φe±idX(1)ce−φe∓idX(−1)〉disk = −1 (3.4)

3The magnitude of the correlation function is easiest to compute on the disk; however to determine the

sign we map the disk to the upper half plane so that f
(n)
i (0) < f

(n)
j (0) for i < j, and use the rules given

in (2.2).
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we get

〈〈(Q̂BT̂ )(η̂0T̂ )〉〉 = −2(2d2 − 1)t2 . (3.5)

This gives

S2 = − 1

2g2

(
d2 − 1

2

)
t2 . (3.6)

The quartic term in the action is

S4 = − 1

48g2

(〈〈
(Q̂BT̂ )T̂ (η̂0T̂ )T̂

〉〉
−
〈〈

(Q̂BT̂ )T̂ T̂ (η̂0T̂ )
〉〉)

. (3.7)

Here we implicitly used the ”twist symmetry” to simplify the expression. We compute the

correlation functions in the same way as above. For example we have

〈〈(Q̂B T̂ )T̂ (η̂0T̂ )T̂ 〉〉 = 2
〈〈

(ηeφeid
eY )(ξce−φe−id

eY )(ce−φeid
eY )(ξce−φe−id

eY )
〉〉

+2
〈〈

(ηeφe−id
eY )(ξce−φeid

eY )(ce−φe−id
eY )(ξce−φeid

eY )
〉〉

(3.8)

and a similar expression for 〈〈(Q̂B T̂ )T̂ T̂ (η̂0T̂ )〉〉. The calculation yields

g2S4 = − t4

12
(4 + 2) (3.9)

The tachyon potential V (t, d) is just the negative of the action as we have chosen the time

coordinate to be periodic with a period 1. This gives

V (t, d) = −(S2 + S4) =
1

2g2

[(
d2 − 1

2

)
t2 + t4

]
(3.10)

We now minimize the potential with respect to t. This gives

[
(1 − 2d2) − 4t2

]
t = 0 (3.11)

The solution t∗ to this equation corresponding to the minimum of V (t, d) is

t2∗ =
1

4
(1 − 2d2) for d2 < 1/2 (3.12)

t∗ = 0 for d2 ≥ 1/2. (3.13)

For d2 < 1/2, the value of the potential at the minimum is given by:

Vmin = − 1

32g2
(1 − 2d2)2 . (3.14)

For d = 0 eq. (3.10)–(3.14) reduce to

V (t, d = 0) =
1

g2

(
−1

4
t2 +

1

2
t4
)

t2∗ = 1/4 ⇒ t∗ = ±1/2

Vmin = − 1

32g2

These are in perfect agreement with the level zero calculations in [20, 21].
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3.2 Including the shift field

Next we wish to compute the tachyon potential to the next non-trivial order. At this level

we need to include the level 1
2 shift field associated with the vertex operator V̂

(1)
K . Thus

the string field has the expansion

Φ̂ = tV̂T + χV̂
(1)
K ≡ T̂ + K̂ . (3.15)

We shall collect terms in the potential up to level (1 + 2d2). Again all terms with higher

than four powers of the string field vanish by φ charge conservation. Thus we need to

examine the terms of order χ2, t2χ and t2χ2. Explicit computation to this order shows

that the coefficient of the χ2 term vanishes and the cubic and quartic terms are given by

S′
3 = − 1√

2 g2
d

(
16

27

)d2− 1
2

t2χ , (3.16)

S′
4 = − 1

g2

(
2

1
2
−d2 + 2−1−2d2

)
t2χ2 . (3.17)

Adding −S′
3 − S′

4 to the previous form of the tachyon potential we get

V (t, χ, d) =
1

2g2

[
−
(

1

2
− d2

)
t2 + t4 +

√
2d

(
16

27

)d2− 1
2

t2χ+

(
2

3
2
−d2 +2−2d2

)
t2χ2

]
(3.18)

Eliminating χ using its equation of motion gives an effective tachyon potential of the form:

Veff(t) =
1

2g2

[
−
(

1

2
− d2 +

1

2
d2

(
16

27
bigg)2d

2−1

(
2

3
2
−d2 + 2−2d2

)−1)
t2 + t4

]
. (3.19)

From this we see that the effect of the field χ is to make the tachyon more tachyonic. This

is not surprising since we expect that once a tachyon vacuum expectation value is switched

on, the field χ will develop a potential that tries to pull the brane and the antibrane

towards each other. This is turn will reduce the tachyon mass2. Minimizing the effective

potential (3.19) with respect to t now gives

Vmin = − 1

32g2

[
1 − 2d2 + d2

(
16

27

)2d2−1(
2

3
2
−d2 + 2−2d2

)−1]2

. (3.20)

On plotting the minimum of the potential as a function of d (see figure 1) we see that

the dependence on the distance d is less pronounced after inclusion of the level 1/2 field as

compared to the case of the pure tachyon potential. We also see that the critical value dc
of d up to which the tachyon potential has a minimum is now given by the solution to the

equation

1 − 2d2
c + d2

c

(
16

27

)2d2c−1 (
2

3
2
−d2c + 2−2d2c

)−1
= 0 . (3.21)

This is larger than the original value 1/
√

2 indicating that the after taking into account

corrections due to higher level fields the minimum of the potential remains below zero for a
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Figure 1: Plot of the minimum of tachyon potential versus distance. We have plotted f(x)= level

d2, g(x)= level 1/2 and h(x)= expected exact answer. We have used the unit g2 = 1/32.

larger range of d.4 We expect the dependence on d to reduce as we include more and more

fields into the analysis. The true minimum of the tachyon potential should not depend on

what distance we separate out the branes initially. This has been shown schematically in

figure 1 .

4. Rolling non-universal tachyon

In this section we shall set up the formalism for describing the rolling tachyon solution on

a separated brane-antibrane pair. We begin by considering an unstable D-brane system

in bosonic string theory, containing a primary boundary operator V of dimension h < 1.

This would correspond to a tachyon of mass2 = (h − 1) in the spectrum. Our goal will

be to construct a time dependent solution in the theory that describes the rolling of this

tachyon away from the maximum of its potential.

Let X = −iX0 denote the world-sheet scalar associated with the Wick rotated time

coordinate. Then the operator

Ṽ = V ei
√

1−hX , (4.1)

is an operator of dimension 1. This will be an exactly marginal operator if a product of

arbitrary number of these operators does not contain an operator of dimension 1. Since a

product of n of these operators contains a factor of ein
√

1−hX of dimension n2(1 − h), we

see that the condition for exact marginality is easily achieved if n2(1 − h) > 1 for n ≥ 2,

4We should note however that for d2 ≥ 1/2 the level (1 + 2d2) terms in the potential are of higher level

than the level 2 terms arising from the χ4 terms. Thus for a consistent approximation we must also include

the quartic coupling of the shift field.
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ı.e. if

h <
3

4
. (4.2)

Since

Ṽ (u)Ṽ (u′) = K(u− u′)2−4he2i
√

1−hX(u′) + · · · (4.3)

with K denoting a constant and · · · denoting less singular terms, we see that for h satisfy-

ing (4.2) the power of (u− u′) in V (u)V (u′) is larger then −1.

Consider now deforming the theory by adding to the action the term

λ

∫
du Ṽ (u) . (4.4)

Then the correlation functions in the deformed theory are computed by inserting into the

correlation function of the undeformed theory the operator

exp

[
−λ

∫
du Ṽ (u)

]
. (4.5)

After expanding the exponential factor we encounter multiple integrals of the form
∫
du1

∫
du2 · · ·

∫
dun Ṽ (u1) · · · Ṽ (un) . (4.6)

Since the operator product Ṽ (ui)Ṽ (uj) is less singular than (ui−uj)−1, the above integral,

inserted into a correlation function of the undeformed theory, gives completely regular

integrals.5 Thus the correlation functions of the deformed theory are determined in terms

of the correlation functions of the undeformed theory without any need to regularize the

theory.

The operator Ṽ defined in (4.1) is of course not hermitian and hence the deforma-

tion (4.5) does not produce a physical background of the open string theory. This problem

disappears after inverse Wick rotation X → −iX0. In this case the operator Ṽ (u) becomes

V (u) eX
0(u)

√
1−h2

and the deformed theory describes a physical open string background.

This in fact describes the rolling of the tachyon associated with the operator V away from

its maximum.

Generalization to the case of unstable D-branes in superstring theory is straightfor-

ward. Suppose we have a vertex operator described by the superfield V−1 + θV0 with

(V−1, V0) having dimensions (h, h + 1
2) and θ denoting the fermionic world-sheet coordi-

nate. If V−1 is a superconformal primary then this describes a tachyon on the D-brane

world-volume of mass2 = (h− 1
2). We now denote as before by X = −iX0 the world-sheet

scalar associated with the Wick rotated time coordinate, and by ψ = −iψ0 its fermionic

superpartner. Then the vertex operator

Ṽ (θ) = e
i (X+θψ)

q
1
2
−h

(V−1 + θV0) ≡ (Ṽ−1 + θṼ0) (4.7)

5The exceptions are correlation functions of boundary operators whose product with eV (u) have stronger

than (u−u′)−1 singularity. Such boundary operators must be renormalized in the deformed theory although

the deformed theory itself is finite. In our analysis we shall consider correlation functions of bulk operator(s)

in the deformed theory, inserted at point(s) away from the boundary. Hence we do not encounter the problem

mentioned above.
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describes a primary superfield whose lowest component has dimension 1/2. Here

Ṽ−1 = Ṽ (θ)|θ=0 = e
iX

q
1
2
−h
V−1, Ṽ0 =

∫
d θ Ṽ (θ) = e

iX
q

1
2
−h
(
V0 + iψV−1

√
1

2
− h

)
,

(4.8)

Hence the highest component Ṽ0 of the superfield Ṽ (θ) is marginal. In order for it to

be exactly marginal we need its operator product with itself not to contain any other

marginal deformation. Repeating the analysis for bosonic string theory we see that this

can be guaranteed if

h <
1

4
. (4.9)

Furthermore in this case the operator product of (4.8) with itself has a singularity that

is milder than (u − u′)−1. Thus the correlation functions in the theory deformed by the

operator

λ

∫
du Ṽ0(u) , (4.10)

are unambiguously determined in terms of the correlation functions in the undeformed

theory without any need to regularize the theory.

As in the case of bosonic string theory, the operator Ṽ0 defined in (4.8) is not hermi-

tian and hence deformation (4.10) does not represent a physical open string background.

However by the inverse Wick rotation iX → X0, iψ → ψ0 we get a hermitian vertex

operator

Ṽ0 = e
X0

q
1
2
−h
(
V0 + ψ0V−1

√
1

2
− h

)
. (4.11)

Thus the deformation of the original theory by this operator produces a physical open

string background.

We conclude this section with two examples. The first example is a Dp-D̄p brane

wrapped on a circle of radius R. Let y denote the coordinate along the compact circle and

Y and ψy be the associated world-sheet scalar and fermion fields respectively. For R >
√

2

there is a tachyon of mass2 = 1
R2 − 1

2 described by the vertex operator:

V−1 + θV0 = σ1 cos

(
Y + θψy

R

)

= σ1

(
cos

Y

R
− 1

R
θ ψy sin

Y

R

)
, (4.12)

where the Pauli matrix σ1 represents the external Chan-Paton factor.6 V−1 has dimension

h = R−2. Thus (4.8), (4.9) shows that for

R > 2 (4.13)

6Note that we have dropped the ‘hat’ and the internal CP factor from the vertex operator. It plays no

role in our analysis since we always have even number of GSO(−) operators in a correlator and hence the

trace over the product of internal CP factors will always give an overall factor of 2. This can be absorbed

into the normalization of the disk partition function.
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we can construct an exactly marginal deformation generated by the operator7

Ṽ0 = σ1 e
iX

q
1
2
− 1

R2

(
−ψy

1

R
sin

Y

R
+ iψ

√
1

2
− 1

R2
cos

Y

R

)
. (4.14)

The operator product Ṽ (u)Ṽ (u′) is less singular than (u− u′)−1 and hence the correlation

functions of the deformed theory are free from any singularity.

The second example, which we shall analyze in detail in later sections, is a Dp-D̄p brane

pair separated by a distance 2πd in the transverse direction. Let y denote the transverse

coordinate along the direction of separation of the branes, Ỹ denote the world-sheet scalar

dual to the scalar field Y associated with the coordinate y, and ψ̃y denote the fermionic

superpartner of Ỹ . In this case for d < 1√
2

there is a tachyonic mode on this system,

represented by the vertex operator

V−1 + θV0 = σ+ ei(
eY+θ eψy) d + σ− e−i(

eY +θ eψy) d

= σ+ (1 + iθψ̃y d) e
ieY d + σ− (1 − iθψ̃y d) e

−ieY d , (4.15)

where σ± are the external Chan-Paton factors

σ+ =

(
0 1

0 0

)
, σ− =

(
0 0

1 0

)
. (4.16)

Since V−1 has dimension h = d2 we see from (4.8), (4.9) that for

d <
1

2
(4.17)

we can construct an exactly marginal deformation generated by the operator

Ṽ0 = i σ+ e
iX

q
1
2
−d2

ei
eY d ψ+ + i σ− e

iX
q

1
2
−d2

e−i
eY d ψ− (4.18)

where

ψ+ =

(
ψ̃y d+ ψ

√
1

2
− d2

)
, ψ− =

(
−ψ̃y d+ ψ

√
1

2
− d2

)
. (4.19)

Again the operator product Ṽ (u)Ṽ (u′) is less singular than (u − u′)−1 and hence the

correlation functions of the deformed theory are free from any singularity.

5. Time dependence of pressure on a separated brane-antibrane system

with a rolling tachyon

We consider a brane-antibrane system separated by a distance 2πd with d < 1
2 in the

presence of a rolling tachyon background generated by the deformation

λ

∫
du Ṽ0(u) , (5.1)

7For R =
√

2 the effect of switching on this operator was analyzed in [32, 33]. Although it appears to

be the sum of two different exactly marginal operators each of which gives a solvable deformation, these

operators anticommute and hence the resulting theory does not appear to be solvable via known methods.
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with Ṽ0 given in (4.18). Let p(x) denotes the x-dependent tangential pressure of the brane

generated by this deformation and p0 be the pressure in the absence of this deformation.

p(x)/p0 has a Fourier expansion of the form

p(x)/p0 =
∑

n≥0

ane
inx

q
1
2
−d2

, (5.2)

for constants an. The coefficients an can be found by examining the boundary state of

the deformed brane if it is known, or equivalently from the disk one point function of the

matter vertex operator e
−inX

q
1
2
−d2

inserted at the center of the unit disk in the deformed

theory:8

an = 〈e−inX(0)
q

1
2
−d2〉deformed , (5.3)

where 〈 〉deformed denotes the correlation function in the deformed theory, normalized such

that in the undeformed theory the disk partition function is 1. Representing the deforma-

tion of the Euclidean world-sheet action as

λ

∫
duṼ0(u) , (5.4)

with u labeling the coordinates on the boundary of the disk, we can reexpress an as [33]

an =
1

2

∞∑

r=0

λ2r

(2r)!

∫
du1 · · · du2r

〈
e
−inX(0)

q
1
2
−d2

Tr
(
Ṽ0(u1) · · · Ṽ0(u2r)

)〉

0

, (5.5)

where 〈 〉0 denotes the correlation function in the undeformed theory on the unit disk

and Tr denotes trace over the Chan-Paton factors. In (5.5) we have used the fact that

the trace over the Chan-Paton factor vanishes if we have odd number of Ṽ0 insertions on

the boundary. The overall factor of 1/2 is a reflection of the factor of 2 appearing in the

expression for the unperturbed pressure p0 from the trace over the Chan-Paton factors.

Using the results (
σ+
)2

=
(
σ−
)2

= 0 , (5.6)

we see that only two strings of Chan-Paton factors contribute to the correlation function

— Tr(σ+σ−σ+σ− · · ·) and Tr(σ−σ+σ−σ+ · · ·). The associated vertex operators must be

cyclically ordered on the boundary of the unit disk. Both strings give the same contribution.

Finally X-momentum conservation, together with the fact that each of the Ṽ0 carries X-

momentum
√

1
2 − d2, shows that the correlator (5.5) is non-vanishing only when n = 2r.

Using this we can express (5.5) as

a2r+1 = 0 for r ∈ Z

a2r = λ2r

∫ 2π

0
dt1

∫ t1

0
dt2 · · ·

∫ t2r−1

0
dt2r

〈
e
−2irX(0)

q
1
2
−d2

e
iX(u1)

q
1
2
−d2 · · · eiX(u2r)

q
1
2
−d2

8The full boundary state contains matter and ghost parts, but the ghost part of the correlation function

as well as the matter part involving fields other than X, eY and their fermionic partners cancel between

p(x) and p0, leaving behind only the part involving X, eY and their fermionic partners.
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× ei
eY (u1) d e−i

eY (u2) d · · · eieY (u2r−1) de−i
eY (u2r) d

× (i)2r ψ+(u1)ψ
−(u2)ψ

+(u3)ψ
−(u4) · · ·ψ+(u2r−1)ψ

−(u2r)

〉
, ui ≡ eiti ,

for r ∈ Z, r ≥ 0 . (5.7)

Note that we have replaced
∫ ∏

dui by
∫ ∏

i dti, — this requires that in computing the

correlators on the right hand side of (5.7) all the fields need to be defined in the t-coordinate

system. The part of the correlator involving the scalar fields X and Ỹ gives

∏

i<j

|ui − uj |1−2d2+2(−1)i+jd2 =
∏

i<j

∣∣∣∣2 sin
ti − tj

2

∣∣∣∣
1−2d2+2(−1)i+jd2

. (5.8)

On the other hand the fermionic correlators can be calculated with the help of Wick’s

theorem using the two point functions9

〈ψ+(u1)ψ
+(u2)〉 = 〈ψ−(u1)ψ

−(u2)〉 =
i

2

ei(ti+tj)/2

u1 − u2
=

1

2

1

2 sin
ti−tj

2

,

〈ψ+(u1)ψ
−(u2)〉 = i

(
1

2
− 2 d2

)
ei(ti+tj)/2

u1 − u2
=

(
1

2
− 2 d2

)
1

2 sin
ti−tj

2

. (5.9)

Although the fermionic correlator in eq. (5.7) contains many terms we can organize them

in a compact form by collecting all terms in which a certain number (say s) of ψ+ pairs

have been contracted with each other, an equal number of ψ− pairs have been contracted

with each other, and the (r−2s) left-over ψ+’s have been contracted with (r−2s) left-over

ψ−’s. After taking into account the combinatoric factors we can express (5.7) as

a2r = (−1)r λ2r

∫ 2π

0
dt1

∫ t1

0
dt2 · · ·

∫ t2r−1

0
dt2r

∏

i<j

∣∣∣∣2 sin
ti − tj

2

∣∣∣∣
1−2d2+2(−1)i+jd2

[r/2]∑

s=0

(1 − 4d2)r−2s(−1)s

(r − 2s)!(s!)222s2r

[
r−1∏

l=2s

(
2 sin

t2l+1 − t2l+2

2

)−1

s−1∏

k=0

{(
2 sin

t4k+1 − t4k+3

2

)−1(
2 sin

t4k+2 − t4k+4

2

)−1
}

+(−1)P+P ′×permutations P of t1, t3, · · · t2r−1 × permutations P ′ of t2, t4, · · · t2r
]
,

(5.10)

where [r/2] denotes the integral part of r/2.

Another compact representation of the correlators is provided by the superfield repre-

sentation [33]. If we denote by Ṽ±(u, θ) the superfields

V±(u, θ) = e
i(X+θψ)

q
1
2
−d2

e±i(
eY+θ eψy) d , (5.11)

9The extra factor of iei(ti+tj)/2 comes from the conformal transformation of ψ± from the u to t coordi-

nate.
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then the expression for a2r given in (5.7) can be written as

a2r = λ2r

∫ 2π

0
dt1

∫ t1

0
dt2 · · ·

∫ t2r−1

0
dt2r

∫
dθ1 · · ·

∫
dθ2r

〈
e−2irX(0) Ṽ +(u1, θ1)Ṽ

−(u2, θ2)Ṽ
+(u3, θ3)Ṽ

−(u4, θ4) × · · · (5.12)

· · · × Ṽ +(u2r−1, θ2r−1)Ṽ
−(u2r, θ2r)

〉

= λ2r

∫ 2π

0
dt1

∫ t1

0
dt2 · · ·

∫ t2r−1

0
dt2r

∫
dθ1 · · ·

∫
dθ2r

∏

i<j

[
2 sin

ti − tj
2

+ θiθj

]1−2d2+2(−1)i+jd2

. (5.13)

After integration over θi eq. (5.12) reduces to (5.10).

Once the coefficients an have been calculated, we can use (5.2) to calculate p(x). In

fact after the inverse Wick rotation ix→ x0 we get

p(x)/p0 =
∑

r≥0

a2re
2rx0

q
1
2
−d2

. (5.14)

Since a2r ∝ λ2r, we can absorb λ into an additive constant in x0. Thus by suitable choice

of the origin of the x0 coordinate we can set λ = (
√

2π)−1. In this case (5.10) reduces to

a2r = (−1)r
∫ 2π

0

dt1
2π

∫ t1

0

dt2
2π

· · ·
∫ t2r−1

0

dt2r
2π

∏

i<j

∣∣∣∣2 sin
ti − tj

2

∣∣∣∣
1−2d2+2(−1)i+jd2

[r/2]∑

s=0

(1 − 4d2)r−2s (−1)s

(r − 2s)!(s!)222s

[
r−1∏

l=2s

(
2 sin

t2l+1 − t2l+2

2

)−1

s−1∏

k=0

{(
2 sin

t4k+1 − t4k+3

2

)−1(
2 sin

t4k+2 − t4k+4

2

)−1
}

+(−1)P+P ′ × permutations P of t1, t3, · · · t2r−1 × permutations P ′ of t2, t4, · · · t2r
]
.

(5.15)

6. Numerical results

We have evaluated the first few coefficients given in (5.15) using Monte Carlo integration

techniques. The results are given in table 1. The integrand is generated using a code in

Mathematica and then we use VEGAS [34] to do the multidimensional integrals. Since these

give the first few terms in the expansion of p(x0)/p0 in a power series in v ≡ e
2x0

q
1
2
−d2

,

we cannot reliably estimate the late time behaviour of p(x0) using these results. A plot

of pressure as a function of v ≡ e
2x0

q
1
2
−d2

is shown in figure 2. From this it seems that

the function does not display the wild oscillation of the kind seen in the tachyon profile
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Figure 2: Plot of the pressure as a function of v = e2
√

1

2
−d2x

0

for various values of d.

r=0 r=1 r=2 r=3 r=4

d=0 1 0.4999999 (1.5E-07) 0.2500775 (3.5E-05) 0.1249626 (2.3E-05) 0.06246 (1.0E-04)

d=0.1 1 0.4803255 (1.6E-07) 0.2284956 (3.2E-05) 0.1079812 (2.0E-05) 0.05088 (1.8E-05)

d=0.2 1 0.4250437 (1.8E-07) 0.1719809 (2.4E-05) 0.0671200 (1.4E-05) 0.02550 (1.3E-05)

d=0.3 1 0.3442298 (3.5E-07) 0.1003526 (1.8E-05) 0.0243640 (9.6E-05) 0.00413 (2.2E-05)

d=0.4 1 0.2512369 (1.0E-05) 0.0338092 (5.0E-05) -0.0039147 (2.9E-05) -0.00429 (2.8E-05)

d=0.5 1 0 -0.0416668 (1.5E-07) 0 0.001729 (1.2 E-05)

Table 1: The table containing the coefficients (−1)ra2r calculated from (5.15). The numbers in

the parenthesis are the estimated errors of the numerical calculations.

computation associated with the rolling tachyon solution in string field theory; instead it

may have a finite radius of convergence, and may admit an analytic continuation to infinite

time as in the case of the behaviour of the pressure in the d = 0 case. With our present

data it is not possible to make any reliable estimate of the asymptotic value of the pressure.

Nevertheless we give in table 2 the results of fitting a ratio of quadratic functions of v to

the series expansion. For the d = 0 case the exact answer is known and it agrees with the

result given in the table. If we take these results seriously then within numerical errors

these results are consistent with the hypothesis that at late time the pressure vanishes.

7. Discussion

We have seen in section 5 that given a tachyon with mass2 less than a certain critical

value we can generate a deformation of the original CFT by an exactly marginal operator

describing a rolling tachyon solution. Furthermore the deformed theory does not require

any additional renormalization beyond those required to renormalize the original CFT.

It turns out that precisely for these ranges of tachyon mass2 we can generate a rolling

– 18 –
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Separation (2,2) Pade Approximation Late Time Pressure

d=0 {1 + 2kv}/{1 + (1/2 + 2k)v + kv2} 0

d=0.1 {1 + (0.20032)v + (0.00052)v2}/{1 + (0.68065)v + (0.09895)v2} 0.00526

d=0.2 {1 + (0.23555)v + (0.00067)v2}/{1 + (0.6606)v + (0.10945)v2} 0.00612

d=0.3 {1 + (0.27651)v − (0.00325)v2}/{1 + (0.6207)v + (0.11007)v2} -0.02936

d=0.4 {1 + (0.19569)v − (0.00283)v2}/{1 + (0.4469)v + (0.07565)v2} -0.03741

d=0.5 {1 − (0.000177)v2}/{1 + (0.04149)v2} -0.00427

Table 2: The table containing the Pade approximant results for the function representing p(x0)/p0.

Here v ≡ e2x
0
√

1

2
−d2

. The last column gives the late time behaviour of the pressure if we take these

expressions seriously. In the first row k is an arbitrary constant.

tachyon solution of open string field theory following the method of [35 – 43, 46].10 Let us

first consider the case of open bosonic string theory. In this case if we have a matter sector

vertex operator Ṽ of dimension 1, then we can generate a non-singular solution of open

bosonic string field theory provided integrals of the form
∫
du′Ṽ (u)Ṽ (u′) do not diverge in

the region u′ ≃ u [35, 36]. But this is precisely the condition that Ṽ (u)Ṽ (u′) will have a

singularity softer than (u − u′)−1. Similarly the condition under which one can generate

a non-singular solution in open superstring field theory corresponding to a dimension half

matter vertex operator Ṽ−1 and its dimension 1 superpartner Ṽ0 is that
∫
du′Ṽ−1(u)Ṽ0(u

′)

and
∫
du′Ṽ0(u)Ṽ0(u

′) do not diverge from u′ ≃ u region [37, 38, 40]. For Ṽ−1 and Ṽ0 given

in eq. (4.8) this happens precisely for h < 1
4 , ı.e. when (4.9) is satisfied. Thus both for

bosonic and superstring field theory we can construct a non-singular solution describing a

rolling non-universal tachyon when the boundary CFT associated with the solution can be

defined without any need to regularize and renormalize the theory. It may be of interest

to study these solutions numerically.
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